If it's not what You are looking for type in the equation solver your own equation and let us solve it.
192-112x+12x^2=0
a = 12; b = -112; c = +192;
Δ = b2-4ac
Δ = -1122-4·12·192
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-16\sqrt{13}}{2*12}=\frac{112-16\sqrt{13}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+16\sqrt{13}}{2*12}=\frac{112+16\sqrt{13}}{24} $
| 4z+9=7z+18 | | 8=7(k-8)=-83 | | 5(w+7)+4w=-28 | | -124+47/8x=-10-1/8x | | 7(v-4)-5v=-30 | | 5x+3x=3(4x-5)-2 | | 3/2d-6=5/2(d-4)+2 | | 7.5=1.5y | | 2x=128x^-2 | | 5n^2-6=7n | | 5x-15=20+5 | | 3x+13+40=58 | | 3w-14=6 | | 64x^2+40x+6=0 | | |6x+2|=2 | | 2(m+3)-4(2m+1)=-3(2+m) | | 8y+4=11y-7 | | 4(a-3)=8a(4a+12) | | 7x-5x-5=22.46 | | 3+4x/3+3-x/2=35/6 | | 7x^2-19-6=0 | | 4x-20+x=50 | | Y=-6/10z+14 | | (X)(3x)=37.5 | | 11x-9x-9=15.54 | | 1.2x-3=6 | | -3(x-12)=-48 | | -3(2n+4)=6 | | -4(1+4x)=-4 | | x-9=-48 | | -13=5+4x–6x | | 18-4y=4 |